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Abstract 

An adaptation of the I(0, ~o) function for location of 
planar group orientation is presented. More accurate 
determination of this orientation is found to be poss- 
ible in some cases using the modified functions, based 
on rings and hoops rather than disks in Patterson 
space. In some examples incorrect orientations are 
corrected by the new functions. A possible extension 
to the simultaneous detection of several small group 
orientations in one molecule, based on bond length 
selection, is discussed. 

Introduction 

The I(0, ~) function was defined by Tollin & Cochran 
(1964). The philosophy of the function is to recognize 
that in a planar group the vectors between pairs of 
atoms in that group will all lie in one plane in Patter- 
son space. By placing a disk of dimensions 
approximating to those of the planar group at the 
origin in Patterson space, one can rotate this disk in 
the two spherical polar coordinates 0 and ~0, the 
integral of the Patterson function over the disk being 
maximized when the disk is in the same orientation 
as the planar group. 

The I(0, ~o) function is 

I(0, ~ ) =  j" P(r) t (r)  dr (1) 
i- 

where 

1 on disk 
t ( r )=  0 elsewhere. 

One may use the facts that the transform of P(r) is 
IF(h)[ 2 and that of a disk is related to the first-order 
Bessel function J~(x) and exploit Parseval's theorem 
to evaluate this (apart from constant factors) as 

I(O, ~')=E[Fh[22~R2J,(2.'RS)/2~RS (2) 
h 
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where S is the distance of the reciprocal-lattice point 
h from the normal to the disk, R is the disk radius, 
and J~(x) is the first-order Bessel function. In practice 
the IF h[ 2 values are replaced by sharpened structure 
factors [F~,[ 2 in the calculations. 

Since its definition, this function has been found 
to locate the orientation of planar groups with 
accuracy in many cases. However, there are occasions 
when the located orientation is either very inaccurate 
or incorrect when I(0, ~o) is calculated. 

Investigation of cases where these problems have 
arisen has suggested three possible contributing 
factors. 

(1) Overemphasis of the contributions of some 
high-order [high (sin 0) /h  ] reflections, caused by the 
sharpening procedure applied to the IF hi 2. 

(2) Possible asymmetry in the large origin peak in 
the Patterson function, especially in cases where the 
asymmetric unit is large and only a small portion is 
planar. 

(3) When the orientation of the group is close to 
one of the extrema of the I(0, ~o) function (e.g. close 
to 0 = 90 °) an 'averaged' orientation of the group and 
a symmetry-related group may be found. For example 
in the TAA example (below) the correct 0 value is 
--80 °, but the I(0, ~o) indicates - 9 0  ° - in this ortho- 
rhombic example there is also a peak at 0 -  100 °, by 
symmetry. This ambiguity is caused by intergroup 
vectors. 

The simplest way of dealing with factor (1) is to 
use data from a restricted range of (sin 0) /h  as used 
in other Patterson-methods techniques (Wilson & 
Tollin, 1988), but in this case cutting off the outer 
[higher (sin 0 ) /h ]  data. The use of [Eh[ 2 values does 
not in general eliminate oversharpening problems, as 
noted elsewhere (Wilson & Tollin, 1988). Problems 
can be encountered in trying to eliminate factor (2) 
by attempting to remove a particularly large and 
asymmetric origin peak from the Patterson function 
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by analytic means. This can be unreliable and lead 
to ambiguities, and often some residual contribution 
can be left which will confuse the later calculations. 

A novel approach to improving the calculation of 
the I(0, ~) function is suggested in this paper, where 
modifications have been made to the disk model used 
in the original I(0, ~o) function. 

Modifying the disk model 

The original I(0, ~o) function uses a disk as model, 
with defining equation 

f ( r )=  Ir]> R (3) 

with Fourier transform (Champeney, 1973) 

F(k)  = 2 ~ R 2 j , ( k R ) / k R .  (4) 

If we wish to exclude vectors of less than a particular 
length in the Patterson summation (akin to a very 
primitive origin removal plus additional terms), the 
function defined in (5) would suffice. This function 
is a 'top hat' function in one dimension, representing 
a 'ring' in Patterson space defined by 

f ( r ) =  R ~ < l r l < e ,  (5) 

Irl > el .  
This function can be regarded as the difference of 
two functions of type (3), with radii RI and R2 respec- 
tively, and for the combined function f ( r ) =  
f , ( r ) - f2 ( r ) ,  the Fourier transform is simply the 
difference between the transforms of the individual 
functions, 

F(k) = 2~-[ R~JI( kR , ) /  kRl - R~J1( kR2)/ kR2]. 
(6) 

The expression (6) can be regarded as the Fourier 
transform of a Patterson-space ring of inner radius 
R2 and outer radius R1. 

From this it is obvious that we can define a 'ring 
I ( O, ~o )' function IR as 

IR( O, q~) = Y~ IF~,I227rS[ R~J~(27rR~S)/27rRIS 
h 

- R~J~(ZTrRzS)/ZrrR2S]. (7) 

This is one of the functions investigated here. 
As an alternative approach, one can define a 'hoop'  

in Patterson space at a particular radius R by the 
equation 

f ( r ) = ( 2 7 r R a ) - ' [ R < r < ( R + a ) ; a , ~ R ]  (8) 

with Fourier transform (Champeney, 1973) 

F(k)  = Jo(kR). (9) 

Hence one can define the 'hoop I(0, ~)' function I .  

a s  

I.(O,~)=~IF~I2Jo(2~RS). (10) 
h 

This function is again investigated here. 
As a final modification of the hoop I(0, ~) function, 

one can convolute a Gaussian envelope onto the hoop 
in Patterson space, which by the properties of Fourier 
transforms implies multiplying by a Gaussian in 
reciprocal space. Hence the 'modulated'  hoop I(0, ~o) 
function I,M has the form 

IHM ( 0, ~0 ) = E I F~I 2 Jo(27rRS) e xp [ - ( 2  ~'S)2/4a 2] 
h 

(11) 

where the parameter a defines the amount of ' spread-  
ing out' of the hoop. In the cases examined here a 
was chosen to be 2-10 A - '  

I(0, ~) function tests 

A series of tests was made on the following com- 
pounds, using each of the four functions I(0, ~), 
I , (0 ,  ~ ), I ,M(  O, ~ ) and In(O, ~ ) as models for planar 
group orientation: 

(A) 2',3',5'-Tri-O-acetyladenosine (TAA) (Wilson, 
Tollin & Howie, 1986). CI6H19N5OT; planar fragment 
is CsNs (p2 = 0.33, p2 = 0.083). Correct planar group 
orientation is (0, q~) = - ( 8 0  °, 16°). 

(B) 2',3',5'-Tri-O-acetylguanosine (TAG) (Wil- 
son, Low & Tollin, 1985). C16H19NsOs, planar frag- 
ment is C5N50 (p2= 0.36, p2 =0.18).  Correct planar 
group orientation is (0, q~)-- - ( 5 4  °, 180°). 

(C) 3-Methylxanthine (MX) (Low, Tollin, Brand 
& Wilson, 1986). C6H6N402, planar fragment is 
C5N402 (p2 = 0.89, p~ = 0.22). Correct planar group 
orientation is (0, ~) = - ( 5 6  °, 174°). 

(D) 2',3',5'-Tri-O-acetyluridine (TAU) (Low & 
Wilson, 1984). CIsHI8N209, planar fragment is 
C4N202 (p2 = 0.29, p2 _- 0.073). Correct planar group 
orientation is (0, ~o) = - ( 5 4  °, 90°). 

(E) 3-Deazauracil (DAZA) (Low & Wilson, 1983). 
CsHsNO2; planar fragment is C5NO2 (p2 = 0.95, p,2 = 
0.24). Correct planar group orientation is (0, ~o)= 
-(43°,  55°). 

The tests were carried out using a range of model 
radii for each compound. In the case of the ring 
function In(0, ~o), the inner ring radius is set to ( R -  
0.1) A, the outer to ( R + 0 . 1  A). The results of the 
extensive I(O, ~o) function tests carried out are con- 
tained in Table 1. All calculations were carried out 
using the program P A T M E T  (Wilson & Tollin, 1986), 
on the Neutron Division VAX 8600 at Rutherford 
Appleton Laboratory. 

In an overall view of the results indicated in Table 
1, the first impression is that the results from the 
modified I(O, ~o) functions are somewhat inconclus- 
ive. No single function seems to give unequivocally 



1080 PLANAR GROUP ORIENTATION IN PATTERSON METHODS 

Table 1. Results of tests of traditional and modified 
I(0, ~ ) functions 

Ranking of correct solution 
[deviation of solution from correct orientation (°)] 

C o m p o u n d  R I In IHM IR 
TAA 2.1 x x x x 

(c = 8.42 A)  2.4 x 1 (7) 1 (7) x 
(80 °, 16 °) 2.8 x i (3) 1 (3) 2 (6) 

4'1 x x x I (5) 
4.5 x x x 2 (2 )  

TAG 2.4 l (0) ( (0 )  1 (0) 1 (7) 
(a  = 7.41 :k) 2.8 l (0) i (0) 1 (0) l (6) 
(54 °, 180 °) 4.1 I (0) I (0) l (0) I (3) 

4.5 I (0) I (0) l (0) 1 (3) 

MX 2.1 1 (6) I (8) l (7) 2 (4 )  
(a  = 3-74,/~) 2.4 1 (7) l (7) l (7) l (0) 
(56 °, 174 °) 2.8 1 (4) 1 (3) 1 (3) 1 (0) 

3.2 1 (6) x x 1 (2) 
3.5 1 (3) x x 1 (0) 

TAU 1.4 x x x x 
(a  = 7 .49,~)  2.1 x x x x 
(54 °, 90 °) 2-4 x I (8) 1 (6) x 

2.8 1 (8) 1 (4) i (0) x 
3.2 1 (6) I (2) I (2) x 
4.0 1 (0) x x x 
4.5 1 (2) x x x 

D A Z A  1.4 1 (8) I (5) 1 (5) 1 (9) 
( b = 5 . 2 8  A)  2.1 1(6)  3 (5)  3 (5 )  1(8)  
(43 °, 55 °) 2.4 l (5) 3 (4) 3 (1) 1 (6) 

2.8 1 (2) 1 (2) 1 (2) 1 (2) 
3.2 l (2) 1 (2) l (2) l (2) 
4"0 1 (2) x x 1 (3) 
4.5 l (2) 3 (5) 2 (4) 1 (2) 

better results than the others. There are, however, 
some general trends which seem to be reasonably well 
borne out by these results. 

(i) The hoop l u ( 0 , ~ )  and modulated hoop 
I ,~(0 ,  ~) functions give very similar results, and 
appear to work best at smaller R values. 

(ii) The ring IR(O, ~) is better for larger R values, 
but in general is the least consistent of the functions. 
This may be a consequence of the fact that this 
function is a sum (difference) of two Bessel function 
terms and any rounding or 'ripple' errors will thus 
be magnified. Rather surprisingly, increasing the 
width of the annulus ( R + / - A R )  where AR > 0.1 
does not seem to alleviate the problems of the ring 
function. Again, this may be attributable to the 
difference nature of the calculation. 

(iii) The disk function [the traditional I(0, ~)] 
seems to be the most consistent form of the calculation 
in these examples. This behaviour is of course in 
keeping with the fact that this function has been 
successful since its inception (Tollin & Cochran, 
1964). 

I(0, ,p) results and interatomic vectors 

A further attempt to interpret the inconsistent results 
of the modified I(0, ~o) functions has been made in 
terms of interatomic ~¢ector density. Table 2 contains 
a list of approximate interatomic vectors in the planar 

Table 2. lnteratomic vector distributions for the five 
organic test structures, ( A )-( E ) (magnitudes in ~ ) 

( A )  T A A  ( B )  T A G  ( C )  M X  ( D )  T A U  ( E )  D A Z A  

]2' i1:10 ]2"41:26 12"1]:10 11"4]: 14 11"4]: 16 
12.41:20 12 '81:6  12"41:24  12.11:2 ]2 .11 :0  
12"81:6 14"11:6 [2.8[: 6 12.41;18 12.41:20 
14.11:8 14"5l: 8 13"21:2 12"81:6 12"81:6 
14"51:6 13.51:20 13.21:0 [3 .21 :0  

14 '01 :4  14.0[: 4 
14-51:2 14"51:0 

portion of each of these compounds, grouped around 
a set of average values. As can be seen from this table, 
the median density of interatomic vectors in com- 
pounds (A)- (E)  tends to occur around 2.4/~, apart 
from bond vectors which of course pack around 
- 1 . 4  A. In addition, in the purine compounds (A), 
(B) and (C)  there is a relatively high density of 
vectors at around 4.1/~. 

One would expect from these considerations that 
for the hoop and ring I(0, ~o) functions, 1.4 ~ would 
be a good radius to try (although this may be some- 
what close to the origin peak if this is extensive), 
2.4/~ should perhaps be the optimum in all these 
structures and for the purine bases 4-1 ~ may also 
give good results. 

Some of these indications do indeed seem to emerge 
in certain of the results, but disappointingly once 
again a clear pattern does not: 

(i) TAA IH(O, ~o) and I ,M(0, ~0) give the correct 
orientation at R -- 2.1, 2.4 A but for none of the other 
radii attempted. 

(ii) TAA IR(O , ~p) is only correct at R =4.1 A. 
(iii) MX Ig(O, ~) fails for R - - 2 . 1 / ~  (correct for 

R = 2 . 4 A ) .  
(iv) TAU IH(O, ~O) and IHM(O, ~) are correct for 

R-> 2.4/~, but fail for R = 4.0/~. 
There remain ambiguities where, although the cor- 

rect solution is indicated in most of the calculations, 
these are often not the highest or even the second- 
highest peaks in the I(0, ~o) map. For example, the 
DAZA IH(O, ~) calculation with R - - 2 . 4  ~ indicates 
the correct solution as the third-highest peak. 

It should be noted that no significant improvement 
in these results is obtained when [Ehl 2-  1 values are 
used as coefficients in the summation in place of I F~,[ 2. 

Discussion 

While the results in the examples studied are some- 
what inconsistent, the general impression is that the 
I(0, ~0) function can be calculated satisfactorily using 
a disk, hoop or ring rotating in Patterson space and 
that the reciprocal-space Bessel functions Jl(X)/X, 
A[Ji(x)/x  ] and Jo(x) can all be used to locate co- 
planar interatomic vectors. There is no clear indica- 
tion as to which of the functions is the best in all 
cases, there being examples when each of the models 
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seems to produce the best results. The original disk 
I(0, ~) function of Tollin & Cochran (1964) would 
seem to be at least as good as the others studied here, 
on average. However, the analysis of radius of model 
against interatomic vector distribution does suggest 
one application which the original disk model would 
not encompass, which will now be outlined. 

Finding the orientation of several groups in one molecule 

In the examples studied above, the orientation of 
one dominant planar group was detected using the 
range of I(0, ~) functions described. These examples 
were taken from small-molecule organic structures. 
In these, the range of bond lengths present in the 
molecule tends to be rather small, and the distribution 
of coplanar interatomic vectors tends to adopt a fairly 
familiar pattern (see Table 2). In these circumstances, 
whatever the choice of model radius, the I(0, ~) 
function will tend to find the orientation of the largest 
planar fragment. If, however, one studied a molecule 
where two distinct planar groups had significantly 
different distributions of interatomic vectors, then 
some selectivity of plane location may be possible 
according to the choice of model radius. For example, 
in an octahedrally coordinated ligand configuration, 
if the axial bonds are 3.0 A long but the equatorial 
are as short as 1.4,~ (Fig. 1), then the interatomic 
vector distributions corresponding to the two perpen- 
dicular planes (i) including two axial, two equatorial 
ligands and (ii) including four equatorial ligands, will 
be significantly different (Table 3). If one selected 
appropriate radii for the model (in this case either a 
hoop or ring in Patterson space) it might be possible 
to detect preferentially one or other of these planes. 
In this simple case, of course, and in other similar 
idealized examples such as tetrahedral or trigonal 
bipyramidal, it might be expected [and has been 
found using both simulated and real data (Wilson, 
unpublished)] that the major planar orientations 
would be found, with differing heights, in the tradi- 
tional (disk) I (0 ,~)  calculation. However, the 

c 

3.0A ~ % q  

C ~ F e  - - C  

eq Ce( I 1.4A eq 

tax 

z //Yx 
0 

Fig. 1. Idealized octahedral  structure used to simulate data for 
tests with disk and hoop functions.  The interatomic vector  distri- 

but ion for this structure is given in Table 3. 

Table 3. lnteratomic vector distributions, expected 
I(0, ~ ) peaks and results for disk and modulated hoop 
I(0, ~) (a = 4 ~-~) calculations on ideal octahedral 

structure (simulated neutron data) 

Atoms Vector distr ibution Expected I ( 0 ,  ~ )  peak 

1,4,5,6,7 11"41:4 (0,0) 
12"01:4 
12.81:2 

1,2,3,5,6 11-41:2 (90,0) 
12'81:1" I 
13.01 : 2~13.2 ± ,al = 7 
13.31:4) 

1,2,3,4,7 11.41:2 (90,90) 
12.81: !) 
13"01:2~13-2 ± al = 7 
[3.3i:4) 

From this one would expect R = 1.4/~ to give a peak at (0, 0), R = 3.2 A 
to give a peak at (90, 0) and (90, 90), and R = 2-0 A to peak at (0, 0) 
Resu l t s :  

R = 1.4/~ - Disk: 1st (0, 0) 99, 2nd (90, 90) 78, 3rd (90, 0) 36. 
Hoop: 1st (0,0 99, 2nd (90,90) 39, 3rd (90,0) 32. 

Both give correct answer but hoop is more clear cut 

R = 3-2 A - Disk: 1st (0, 0) 99, 2nd (90, 90) 73, 3rd (90, 0) 36. 
Hoop: 1st (90,90) 99, 2nd (90,0) 67, 3rd (0,0) 38. 

Disk is wrong, hoop selects the correct answer for  - 3  ,~ vectors 

R =2'0/~ - Disk: 1st (0,0) 99, 2nd (90,90) 40, 3rd (90,0) 19. 
Hoop: ist (0,0) 99, 2nd (90,90) 34, 3rd (90,0) 11. 

Again both correct but hoop more clear cut 

extension to more complicated structures such as 
zeolite frameworks where the Si-O tetrahedra may 
be of interest would probably require the use of hoops 
or rings. 

A calculation using simulated neutron data for the 
octahedral model shown in Fig. 1 has been performed 
using disk and modulated hoop models in the I(0, ~) 
function. The results are summarized in Table 3, along 
with the expected planes for various sets of inter- 
atomic vectors present in the model. These results 
quite clearly indicate the improvements obtainable 
by the selective nature of the hoop function, where 
the - 3  A vectors lead to the enhancement of 0 = 90, 

= 0, 90 ° peaks in the hoop calculation, but the disk 
(0. ~/( values of (0°, 0°), being domi - calculation gives '1 vectors 

nated by the 1.4, present in the overall 
system. In addition, the hoop function tends to have 
smaller secondary peaks than those calculated using 
the disk. 

A further consideration in these calculations, poss- 
ibly more relevant to possible applications of these 
functions to neutron data but also of interest in X-ray 
applications, is the necessity for optimal sharpening 
of structure-factor data by either analytical or 
maximum entropical (with implied 'smoothest '  distri- 
bution) means. Examination of the effects of various 
sharpening schemes is under study (David & Wilson, 
work in progress) as part of the continuation of this 
work. 

Concluding remarks 

Modifications to the I(0, ~) function for the location 
of planar group orientation exploiting hoops and 
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rings rather than disks have been examined and the 
results show that all three models can be utilized in 
determination of this orientation. However, no unam- 
biguous indication of which is the best function to 
use emerges. This may indeed mean that all models 
used, which by their nature are gross approximations 
to the actual structure under study, suffer equally 
from this approximation, with local variations in par- 
ticular calculations favouring one or the other. The 
reasonable results obtained using the 'selective' hoop 
and ring models in the simulated cases suggest that 
further pursuance of the location of several planar 
groups simultaneously and selectively (on bond 
lengths/interatomic vector distributions) may be 
fruitful and work is continuing on this possible 
development of the ideas advanced here. 

The authors thank Dr W. I. F. David for helpful 
discussions. 
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Abstract 

All 2571 permutational colour space groups G ~P~= 
Tt~(~ tP) isostructural to the 230 space groups are 
tabulated and classified. The method for constructing 
these groups is described. The permutational rep- 
resentation D~' associated with each G ~P~ is given 
in order to make the physical applications easier. The 
group-theoretical criteria of the Landau theory have 
been checked in connection with the colour space- 
group application in phase transition analysis. Com- 
parison with the results of other authors is given. 

1. Introduction 

The theory of crystallographic colour groups is a 
relatively new group-theoretical approach in the 
description of the structure and physical properties 
of crystals (see Shubnikov & Koptsik, 1974). Many 
problems of solid-state physics connected with the 
determination of the relationships between the sym- 
metry group of the crystal, its subgroups, factor 
groups and their representations can effectively be 
solved using the colour-group theory and the corre- 
sponding tables of groups. The interpretation of the 
Landau theory of continuous phase transitions in 
terms of the permutational colour groups can be given 
as an example. It is based on the results of Koptsik 
& Kotzev (1974a, b), and Kotzev (1975) and is pub- 
lished in a series of papers (Kotzev, Litvin & Birman, 

0108-7673/88/061082-15503.00 

1982; Litvin, Kotzev & Birman, 1982; Kotzev, Koptsik 
& Rustamov, 1983). 

A historical review of the colour-symmetry theory 
is given in the monograph of Shubnikov & Koptsik 
(1974) and the recent article by Schwarzenberger 
(1984). Therein a comprehensive list of the most 
important papers in this field (including the works of 
Heesch, Shubnikov, Belov, Wondratschek, van der 
Waerden & Burckhardt, Zamorzaev etc.) can be 
found. The most general theory covering all possible 
kinds of generalized (colour) groups was advanced 
by Koptsik & Kotzev (1974a, b) (see also Koptsik, 
1975; Kotzev, 1975, 1980). 

The groups to be discussed in the present paper 
are a special type of colour group, the P-type permu- 
tational colour groups, or 'colour groups' for short. 

Unfortunately, the derivation and tabulation of all 
the colour groups is too complicated. The number of 
the colour point groups is finite and all these groups 
have been derived and published (e.g. Shubnikov & 
Koptsik, 1974; Koptsik & Kotzev, 1974a; Harker, 
1976; Litvin, Kotzev & Birman, 1982). The colour 
space groups can be subdivided into two types: (i) 
groups with colour-preserving translation subgroup 
T t~) - their number is finite and all of them have been 
derived by Kotzev & Alexandrova (1986); and (ii) 
groups Ttn')G tn2) with colour translation subgroup 
T ~n,) containing a maximal colour-preserving one T ~) 
of index n~ -> 2. The list of these groups is finite for 
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